

US DEPARTMENT OF DEFENSE BLAST INJURY RESEARCH PROGRAM COORDINATING OFFICE

Neurocognitive Function and Psychological Health Assessment of Subtle Cognitive Changes Following Low Level Blast Exposure

The neurological deficits of mTBI can be subtle. This may be especially true in cases involving repeated sub-concussive events. Inferential statistics on neuropsychological scores may not be appropriate for detecting between-group differences in these scenarios. A sub-group of individuals with poor performance may be masked by others in the normal range. A more sensitive methodology may be calculating the reliable change interval (RCI) between pre- and post-test measurements, then determining whether individuals fall into this range. Researchers at DVBIC, NMCSD, Space and Naval Warfare Systems Command, NSWC, and the USUHS investigated the RCI as a methodology for detecting neuropsychological deficits associated sub-concussive blast events. The researchers collected pre- and post-test neuropsychological measurements on learning (Hopkins Verbal Learning Test-Revised [HVLT-R]), delayed recall (HVLT-R DR), processing speed (Trail Making Test Part A), and executive function from Service Members who participated in a combat training course. Participants fired shoulder-mounted munitions while sensors on their person recorded blast events above 2.5 psi. The researchers compared pre-training to post-training measures using three methods: inferential statistics (paired samples t-test), individual change with reliable RCI using a 90 percent confidence interval, and RCI with a correction for practice effects. Service Members experienced a median of five blast events above 2.5 psi in a one-hour period. The paired sample ttest showed no difference between pre- and post-test groups. The RCI methodology showed a larger than expected (p < 0.001) number of participants had lower scores on the learning (HVLT-R: 15.6 percent) and delayed memory tasks (HVLT-R DR: 20.3 percent). The RCI adjusted for practice effects did not appreciably change the number of participants with lower-than-normal scores. The study found that the paired t-test was unable to detect differences between pre- and post-test neuropsychological measures. However, the RCI methodology found that a higher-than-expected percentage of participants with low HVLT-R scores after combat training. The results suggest real cognitive deficits are associated with the repeated sub-concussive blast exposure. Specialized analysis of neuropsychological data may be necessary to detect this condition.