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Over the past decade, there has been increasing awareness of the central nervous system (CNS) effects of exposure 
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grown over common, repetitive forms of blast exposure during military service that are, most often, unrelated to 
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development, as well as on the broader health of military service members.

The authors of this report review the relevant literature on the effects of repeated, military occupational blast (MOB) 

exposures; prioritize the key research and policy gaps related to repeated MOB exposure; and examine the projects 

and initiatives that attempt to address those research and policy gaps. 
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Preface

This report documents research and analysis conducted as part of a project entitled Facilitating 
the Seventh Department of Defense State of the Science Meeting for Blast Injury Research, spon-
sored by the U.S. Army Medical Research and Materiel Command. The purpose of the proj-
ect was to facilitate the convening of the Seventh Department of Defense State-of-the-Science 
Meeting for Blast Injury. 

This research was conducted within RAND Arroyo Center’s Personnel, Training, and 
Health Program. RAND Arroyo Center, part of the RAND Corporation, is a federally funded 
research and development center (FFRDC) sponsored by the United States Army.

RAND operates under a “Federal-Wide Assurance” (FWA00003425) and complies 
with the Code of Federal Regulations for the Protection of Human Subjects Under United States 
Law (45 CFR 46), also known as “the Common Rule,” as well as with the implementation 
guidance set forth in DoD Instruction 3216.02. As applicable, this compliance includes reviews 
and approvals by RAND’s Institutional Review Board (the Human Subjects Protection Com-
mittee) and by the U.S. Army. The views of sources utilized in this study are solely their own 
and do not represent the official policy or position of DoD or the U.S. Government.
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Summary

This report details the state of the science regarding the relationship between occupational 
exposure to low-level blasts and nervous system problems in military service members. This lit-
erature review was completed as part of the 2017 State of the Science (SoS) Meeting sponsored 
by the United States Department of Defense (DoD) Blast Injury Research Program Coordi-
nating Office. The goal of the SoS and its associated processes is to identify what is known and 
not known pertaining to key blast injury–related topics and emerging issues. The topic of the 
7th SoS as well as this supporting literature review is “The Neurological Effects of Repeated 
Exposure to Military Occupational Levels of Blast: Implications for Health and Prevention.”

Over the past decade, awareness of the central nervous system (CNS) effects of explo-
sive blast exposure has increased. A key driver of that awareness has been the blast-related 
injuries suffered by service members during combat operations in Iraq and Afghanistan. As 
U.S. combat operations in these regions have largely come to a close, there has been growing 
concern over repetitive forms of blast exposure during military service that is, most often, 
unrelated to combat. Examples of these forms of exposure include exposure to weapon sys-
tems, such as “recoilless” rifles and shoulder-launched rocket launchers (e.g., the Carl Gustav 
antitank weapon), that can produce more than one blast exposure per round. The repeated 
exposure to these low-level blasts raises new questions of effects on CNS structure and func-
tion and on the health of those service members who have been exposed to repeated discharges. 
The literature review that follows has targeted the scientific literature pertaining to the effects 
of repeated military occupational blast exposures, specifically exploring what is known regard-
ing the broad nervous system consequences of these exposures. For this review, military occu-
pational blast (MOB) was defined as low-level repeated blast exposures that do not result in 
immediate loss of consciousness (LoC) and often may not even involve acute alteration of con-
sciousness (AoC), and that have potential neurological health implications. Either LoC or AoC 
are prerequisites for mild traumatic brain injury (mTBI) and therefore, this report is focused 
mainly on sub-mTBI (i.e., subconcussive) blast exposure. The literature review addressed the 
following research questions:

1. What is known about the occurrence of repeated low-level occupational blast exposure 
incurred during military service? 

2. What is the scientific evidence relating to the potential neurological health effects of 
repeated low-level occupational blast exposure? 

3. What are promising strategies for preventing the potential neurological effects of 
repeated low-level military occupational blast exposure? 

4. What are promising early detection indicators for the potential neurological conse-
quences of repeated low-level military occupational blast exposure? 
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Methods 

We sought to review related studies to help us better understand short-, intermediate-, and 
long-term neurological outcomes associated with repeat low-level MOB exposure. Outcomes 
of importance that are considered in this review include functional status, physical and emo-
tional symptoms, neuropsychological outcomes, theoretically plausible biomarkers, and clin-
ical injuries and illnesses. Human studies to date largely address samples exposed to blast 
during combat, making it difficult to parse primary blast exposure effects of repeated low-level 
MOB (i.e., injury due to the blast overpressure wave) from secondary and tertiary blast injury 
effects (i.e., penetrating injury from blast fragments and blunt force injury when thrown by 
a blast, respectively). These studies were observational, with blast exposure assessed by self-
report often months or years later. Animal studies offer the important advantages of experi-
mental design for causal inference and the capacity to isolate some effects of blast overpressure 
exposure, so it was decided to include animal studies that evaluated primary blast exposures 
of 20 psi or less. The research team was aware of concerns regarding interspecies variation in 
blast effects, challenges correlating level of blast in animals to those in humans, limitations of 
evidence gleaned from laboratory paradigms designed to model concussive rather than sub-
concussive blast exposures in animals (i.e., “shock tube” methods), interlaboratory variation in 
procedures (e.g., position, single versus multiple exposures) and measurements, and variation 
as to whether exposure paradigms include multiple low-level blasts or a single blast exposure. 
However, to address questions of biological plausibility, it was decided to include appropriate 
experimental animal evidence. 

A three-step process was used to develop search terms. First, potential search terms were 
identified from previous DoD Blast Injury Research State-of-the-Science (SoS) Literature 
Reviews, terms specifically relevant to the 7th SoS topic, and related National Library of Medi-
cine Medical Subject Headings. Second, a preliminary literature search was performed and the 
results used to improve the search strategy. Third, the SoS Planning Committee, a group of 
experts from fields related to the 7th SoS topic, reviewed the search terms and recommended 
additional terms and search modifications. We then used a five-step process to produce this 
literature review: (1) definition of key questions, (2) literature search, (3) title and abstract 
and full text screening, (4) data abstraction, and (5) analysis. We searched peer-reviewed and 
gray literature that described the nature and effect of routinely incurring low-levels of MOB, 
including peer-reviewed scientific literature dating from 2007 to 2017, in PubMed, Web of 
Science, and PsycINFO, and research reports and proposals on the Defense Technical Infor-
mation Center (DTIC). Additional relevant publications were identified from bibliographies of 
identified articles, targeted searches, and planning committee recommendations. Eligible stud-
ies included related human and animal studies and bioengineering models. This search yielded 
369 full-text articles, of which 74 met inclusion criteria and were included in this review. Of 
these 74 articles, 28 were animal studies, 25 were human studies, and the remainder were 
reviews, bioengineering simulations, or medical news reports. 

Of the 53 human and animal studies, 23 were longitudinal (i.e., followed subjects for 
24 hours or longer). Only six followed subjects for longer than three months (three animal 
studies and three human studies). There was wide variation within both animal and human 
studies in subjects sampled, the assessments and study methods employed, and the outcomes 
assessed, making it difficult to reliably identify any replicated studies. 
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Key Findings

Occurrence of Low-Level MOB Exposure

The research team identified no research on the overall military population frequency of low-
level MOB exposure. Five published studies evaluated military breachers—personnel who use 
explosives in the operational or training environment to gain rapid entry into buildings or 
across hard walls or structures after repeated low-level blast exposure. None of those studies 
combined appropriate controls, procedures to account for potential confounding, or a sig-
nificant positive relationship of low-level MOB exposure to an outcome. One study found 
microhemorrhages in the brains and meninges of rats and pigs after experimental exposure 
to  shoulder-mounted artillery weapon– and howitzer launcher–generated blast overpressure. 
There are no identified guidelines or models from which to determine what constitutes a safe 
level of repeated MOB exposure for the low levels often incurred in training or analogous 
settings. 

Potential Neurologic Effects of Low-Level MOB

Motor Effects

None of the human or animal studies identified specifically looked for or identified motor 
effects of repeated low-level MOB exposure. 

Neurosensory Effects

None of the human studies specifically sought or revealed neurosensory effects of repeated 
low-level MOB exposure. One study of rats exposed to low-level blast found increased expres-
sion of the pain mediator transient receptor potential vanilloid 1 in corneal tissue.

Cognition Effects

We identified two human studies of repeated low-level MOB exposure, neither of which found 
cognitive effects. However, six animal studies looked for cognitive effects of low-level MOB 
exposure; all of those showed a positive relationship, which suggests the cognitive domain may 
be particularly sensitive to low-level blast exposure. In these animal studies, blast exposures 
ranging from three to ten psi were associated with reduced learning or cognition, with measur-
able effects persisting up to 30 days. 

Neuropathologic Effects

None of the human studies addressed—based on our definition—specific neuropathology 
related to repeated low-level MOB exposure. Published studies have focused exclusively on 
combat samples with higher-level blast exposures. Ten of 11 studies in rodents (rats and mice) 
found evidence of neuropathological changes after low-level blast exposure. Findings from 
these studies include evidence of increased permeability of the blood-brain barrier on magnetic 
resonance imaging; increases in fractional anisotropy; decrease in radial diffusivity on diffu-
sion tensor imaging; changes to the cortex and hippocampus; white-matter changes, including 
greater amyloid precursor protein immunoreactive cells; chronic microvascular changes; scat-
tered pyknotic neurons; altered gene expression; dynamic microglial and macrophage responses; 
microdomains of brain microvessel dysfunction; and other findings. 

Given the substantial interspecies neuroanatomical and cranial differences between 
rodents and humans, the extent to which such findings in rodents may be generalized to 



xii    Neurological Effects of Repeated Exposure to Military Occupational Levels of Blast

humans is unclear. However, the findings provide evidence that neuropathology in humans 
related to repeated low-level MOB exposure is plausible. Future animal studies should assess 
for similar effects in large animals, including nonhuman primates. 

Behavioral and Emotional Effects

Human studies, mainly cross-sectional, have suggested that behavioral and emotional symp-
toms following blast-related traumatic brain injury (TBI) may be largely explained by coex-
isting posttraumatic stress disorder (PTSD) and depression. Cross-sectional studies suggest 
that blast exposure may increase PTSD arousal symptoms (e.g., hypervigilance). The interplay 
between PTSD and TBI is complex. Blast exposure in anesthetized animals is associated with 
PTSD-like manifestations, leading some researchers to hypothesize that the primary injury is 
not psychological but instead due to direct blast exposure effects, resulting in reduced frontal 
lobe inhibition of the amygdala, a center of fear expression previously implicated in PTSD and 
the psychological threat response. 

Auditory and Vestibular Effects

It has long been known that blast exposures during military service can lead to sensorineu-
ral hearing loss. Three human studies looked for an association between blast exposure and 
auditory or vestibular impairments and symptoms in combat-deployed service members. Not 
surprisingly, all were positive. One study of 573 previously deployed service members with 
mTBI found a dose-response link between member-reported blast exposures and member-
reported hearing loss and tinnitus. A crossover study found that low-level blast exposure from 
small- caliber arms fire, even while wearing fitted earplugs (adherence to earplug use was not 
described), affected middle-ear function and was associated with transient tinnitus. No related 
animal studies were identified. 

Visual Effects 

Closed-globe eye injuries are known to occur from combat-related blast exposure, although 
these injuries typically occur at higher blast-exposure levels than those that are the focus of this 
review. No human studies assessing or revealing eye effects of low-level MOB exposure were 
identified. A single animal study assessed the eye effects of single and repeated low-level blast 
exposures and found increased pain and inflammation in corneal tissue. 

Early Exposure Indicators

Studies in animals and humans have examined a variety of different biomarkers with incon-
sistent findings to date. Preliminary studies of biosensors to monitor troops for the concussive 
effects of blast exposure have so far proven disappointing, and we found no studies that used 
biosensor data to assess subconcussive blast. 

Potential Prevention Methods

Several preventive methods are addressed, including barrier and non-barrier methods and safety 
guidelines. Research on barrier methods has included helmets, earplugs, and body armor. Hel-
mets (e.g., Advanced Combat Helmet), are typically designed to protect the wearer from head 
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trauma due to projectiles rather than blast exposure and may sometimes even amplify blast 
exposure. Earplugs are the most effective barrier protection from hearing-related blast exposure 
injury. The limited research on non-barrier prevention methods suggest that education pro-
grams may increase the use of hearing protection. 

Conclusions

What Is Known About the Occurrence of Repeated Occupational Blast Exposure Incurred 
During Military Service? 

We found no published information regarding military service–specific frequencies of expo-
sure to low-level MOB. The only available information pertains to higher levels of blast expo-
sure that is encountered in combat settings. 

What Is the Scientific Evidence Relating to the Potential Neurological Health Effects of 
Repeated Occupational Blast Exposure? 

Experimental studies in animals suggest that persistent neurological effects from low-level blast 
exposure (i.e., under 10 psi) are plausible. However, interspecies differences in exposure suscep-
tibility may be large, and there have been no experimental studies of low-level blast exposure 
effects in nonhuman primates. There remains significant uncertainty as to how low-level blast-
exposure effects observed in animal studies translate to humans. 

Epidemiological and clinical studies of military personnel provide sufficient evidence of 
an association between combat-related blast exposure without penetrating injury, postconcus-
sive syndrome (PCS), and PTSD. However, these blast-exposure levels are higher than the 
subconcussive exposures of interest in this review, which are blast exposures of a level occur-
ring during routine field training, breaching, artillery fire, and shoulder-mounted weapons 
discharge. Moreover, the precise nature of the relationship between PCS and PTSD remains 
unclear—it is possible that nonspecific symptoms of PTSD may explain apparent associa-
tions between mTBI and PCS. Similarly, mTBI may have effects on the amygdala that mimic 
PTSD-like symptoms or result in increased vulnerability to PTSD. However, the relevance of 
this discussion to repeated low-level MOB exposure is not known.

What Are Promising Strategies for Preventing the Potential Neurological Effects of 
Repeated Military Occupational Blast Exposure?

Prevention programs targeting health risks that do not exist or implementing preventive meth-
ods that are not effective are clearly an unnecessary waste of societal resources—resources that 
presumably can be put to more productive use. Therefore, the relevance of discussion regard-
ing prevention strategies depends on the answers to the following key questions that, at pres-
ent, remain largely unanswered: 

• Is repeated low-level MOB exposure a significant risk to current and future force health? 
There should be consensus, ideally based on empirical data, that the threat of MOB to 
health is significant before resources are devoted to preventing the health effects of such 
exposure. 

• Are current preventive interventions safe and effective? Even if the problem is substantial, 
ineffective primary prevention approaches will prove wasteful. 
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• Will preventive intervention benefits outweigh the harms? If a preventive intervention is 
effective but renders the population vulnerable to more-serious threats, then its imple-
mentation would be self-defeating.

• Is the preventive intervention timely and feasible? If the preventive intervention is perfectly 
effective but cannot be delivered in time, it is not useful. There are any number of related 
factors to consider here: the availability of relevant material and staffing, and the accept-
ability of the intervention for leaders, service members, and society at large. 

Given the early state of research into repeated low-level MOB exposure as a problem dis-
tinct from blast-related TBI, we recommend a cautious approach that would complete research 
into the effects of preventive intervention development and testing before implementing aggres-
sive surveillance and prevention programs specifically targeting low-level MOB exposure. 

We are not suggesting the abandonment of current protective measures against high-
intensity combat blast injuries (e.g., mild, moderate, and severe TBI). However, as it pertains to 
low-level MOB exposure, the state of the science is preliminary at best. Implementing aggres-
sive preventive programs against this threat without adequate evidence of preventable injury 
risks the consumption of considerable resources without commensurate benefit and may have 
adverse, unanticipated, and unintended consequences. 

What Are Promising Early Detection Indicators for the Potential Neurological 
Consequences of Repeated Military Occupational Blast Exposure? 

The research team was unable to identify early detection biomarkers, a key type of early detec-
tion indicator, in humans. Even candidate biomarkers remain highly speculative and less than 
feasible, as they are almost exclusively the product of rat and mouse studies. Biosensors are 
a second key indicator, but we were similarly unable to identify published biosensor studies 
designed to assess the health effects of low-level MOB exposure. The development and vali-
dation of improved human biosensor systems and methods of using human biosensor data to 
model the physiologic and physical effects of low-level MOB exposure on human tissue should 
be prioritized and pursued. Biosensor data is a potentially low-burden method for modeling 
low-level MOB exposure for use in prospective cohort research designs. 

Recommendations

Perhaps the most-striking finding from this review of the literature is how little research has 
been done to determine the organizational threat and service member health impact of low-
level MOB exposure, in contrast with our rapidly improving empirical research base relating 
to blast-related traumatic (concussive) brain injury. The 2018 National Defense Authorization 
Act mandated the design, initiation, and completion of a prospective longitudinal cohort study 
of low-level MOB exposure in a population-based sample of service members, and this study is 
one opportunity to improve understanding of repeated low-level MOB exposure. Our recom-
mendations center on the need to improve this understanding through a coordinated program 
of epidemiologic, etiologic, measurement, and preventive intervention research. Organiza-
tionwide efforts to implement population exposure surveillance are more likely to be inef-
fective if implemented before the neurological effects of low-level MOB exposure are better 
characterized. 
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CHAPTER ONE

Introduction

Over the past decade, there has been increasing awareness of the central nervous system (CNS) 
effects of exposure to explosive blast. A key driver of that awareness has been the blast-related 
injuries suffered during combat operations in Iraq and Afghanistan (Mac Donald et al., 2011; 
Miller, 2012). With the relative cessation of U.S. combat operations in these regions, concern 
has grown over common, repetitive forms of blast exposure during military service that are, 
most often, unrelated to combat. Examples of these exposures include heavy weapons, such as 
firing artillery, recoilless rifles, and shoulder-launched rocket launchers (e.g., the Carl Gustav 
antitank weapon) (Hamilton, 2017). These blast exposures are of much lower intensity than 
those causing recognized combat-related injuries; however, becoming proficient with these 
heavy weapon systems may require repeated exposure. Repeated exposure scenarios raise new 
questions concerning the potential for effects on CNS structure, function, and subsequent 
development, as well as on the broader health of the service members exposed. 

As awareness of the potential effects of exposure to explosive blast increases, there has 
been extensive study and ongoing discussion of the neurological, neurocognitive, and emo-
tional consequences of mild traumatic brain injury (mTBI) (Hoge et al., 2008; Walker et al., 
2017), but the blast exposures of interest in this report are different in both magnitude and 
type. At the time of exposure, mTBI is marked either by brief alterations in consciousness 
(AoC) (seeing stars, having one’s “bell rung”) or a loss of consciousness (LoC), with the latter 
lasting up to 30 minutes (Management of Concussion-mild Traumatic Brain Injury Working 
Group, 2016). In contrast, the low-level blast exposures that are of interest in this report do 
not result in LoC and seldom cause AoC. Furthermore, most research on mTBI to date has 
focused on injury due to blunt-force trauma (i.e., a physical blow to the head) rather than to 
blast exposure, and research demonstrates that blast-induced brain injury may be different 
from blunt-force trauma (Fischer et al., 2014). 

The literature review that follows has therefore targeted the scientific literature pertaining 
to the effects of repeated, military occupational blast exposures, specifically exploring what is 
known regarding the nervous system consequences of these exposures. For the purpose of this 
review, military occupational blast (MOB) is defined as low-level blasts that military members 
are exposed to through occupational situations that do not result in immediate LoC and may 
not involve acute AoC or apparent symptoms. Exposure to MOB has the potential to have 
health or safety implications. 
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Purpose of the Review

The purpose of this literature review is to support the U.S. Department of Defense (DoD) 
Blast Injury Research Program Coordinating Office (PCO)–sponsored Seventh DoD State-
of-the-Science (SoS) Meeting. The goal of the SoS and its associated processes is to identify 
what is known and not known pertaining to key blast injury–related topics and emerging 
issues. The topic of the 7th SoS as well as this supporting literature review is “The Neurologi-
cal Effects of Repeated Exposure to Military Occupational Levels of Blast: Implications for 
Health and Prevention.” 

To inform the 7th SoS, the PCO requested a literature review regarding the broad neuro-
logical and neurocognitive effects of repeated exposure to military occupational levels of blast 
and their implications for health and prevention. This review focuses on scientific evidence 
from medical, physiological, bioengineering, and health policy studies. In this review, our 
research team addressed the following questions:

1. What is known about the occurrence of repeated occupational blast exposure incurred 
during military service? 

2. What is the scientific evidence relating to the potential neurological health effects of 
repeated occupational blast exposure?

3. What are promising strategies for preventing the potential neurological effects of 
repeated MOB exposure? 

4. What are promising early detection indicators for the potential neurological conse-
quences of repeated MOB exposure? 

In reviewing the literature, we also sought to prioritize key research and policy gaps 
related to repeated MOB exposure, and examine the projects and initiatives that attempt to 
address them.

Blast Exposures of Interest

Blast exposures can cause injury via primary, secondary, tertiary, quaternary, or quinary mech-
anisms. Primary blast exposure injuries involve tissue damage that occurs directly from the 
shock of the overpressure wave colliding with the body. Secondary blast exposure injuries are 
those produced by fragments from the exploding device, or secondary projectiles from the 
environment (e.g., debris, vehicle fragments). Tertiary blast exposure injuries result from blast-
related displacement of body parts that strike other objects, causing a variety of injury types 
(e.g., blunt, avulsion, crush). Quaternary and quinary blast exposure injuries result from other 
explosive products or the clinical consequences of environmental contaminants (e.g., biologi-
cals, radiation, released fuels), respectively. The magnitude of the blast exposures of interest in 
this literature review are exposures that do not result in LoC or AoC. 
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Outcomes of Interest

We sought to review studies to help us better understand outcomes in the short (one day to 
three months following exposure), intermediate (three to nine months following exposure), 
and long terms (ten months or more after exposure). Outcomes of importance considered here 
included functional status, physical and emotional symptoms, neuropsychological outcomes, 
theoretically plausible biomarkers, and clinical injuries and illnesses. 
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CHAPTER TWO

Methodology

We used a five-step process to conduct this literature review: (1) definition of key ques-
tions, (2) literature search, (3) title abstract and full text screening, (4) data abstraction, and 
(5) analysis.

Key Questions

The central review questions were: What are the neurological effects of repeated exposure to 
military occupational levels of blast? What are the implications for health and prevention? 
From these questions, our research team established the following four subquestions:

1. What is known about the occurrence of repeated occupational blast exposure incurred 
during military service?

2. What is the scientific evidence relating to the potential neurological health effects of 
repeated occupational blast exposure?

3. What are promising strategies for preventing the potential neurological effects of 
repeated military occupational blast exposure?

4. What are promising early detection indicators for the potential neurological conse-
quences of repeated military occupational blast exposure?

Literature Search

We searched peer-reviewed and gray literature that described the nature and effect of routinely 
incurring low levels of blast exposures in training and in theater. We searched the peer-reviewed 
scientific literature on PubMed, Web of Science, and PsycINFO, and the DoD grey literature 
on Defense Technical Information Center (DTIC) dating back to 2007. This ten-year time 
horizon was selected for consistency with previous SoS literature-review search criteria. 

A three-step process was used to develop search terms. First, with the help of a RAND 
Corporation Knowledge Services librarian, potential search terms were identified from previ-
ous SoS reports, terms specifically relevant to the 7th SoS topic, and related Medline medical 
subject headings. Second, a preliminary literature search was performed and its results used 
to improve the initial search strategy. Third, the SoS planning committee reviewed the search 
terms and recommended additional terms. Search terms are in Table 2.1.
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Table 2.1 
Search Terms

Search Terms

Exposure
Blast; brain; combat, battle; training, field training; low-level; psi; pressure, 
overpressure; shoulder-fired weapon; training; trauma; artillery, gun, cannon, rifle, 
howitzer, mortar, recoil, grenade, bomb, bazooka; Carl Gustaf / Carl Gustav

Population and 
context

Breachers; military, Army, Navy, Marine; occupational; deploy, deployed, deploying; 
infantry; Occupational Safety and Health Administration (OSHA); mining; field exercise, 
military exercise

Strategies, 
interventions, and 
challenges

Armor; helmet; Kevlar; goggles; detection; mitigation; prevention; protection, 
protective gear; mitigation; safety–field training, military, workplace, occupational; 
combat simulation, battle simulation

Injury or outcomes

Concuss*; disability; functional status; memory; central nervous system; ocular; 
auditory; headache; neuro*; lung; cerebrospinal; mental health; traumatic brain injury, 
mTBI; biomarker; seizure; epilepsy; posttraumatic stress disorder (PTSD); cognitive 
deficits; axonal injury; white matter; EEG (electroencephalogram); working memory; 
neuroendocrine; neuroinflammation; neurovascular; neurocognitive; neuronal
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CHAPTER THREE

Review Findings

Our search yielded 3,892 citations for initial title and abstract screening. Two teams of two 
reviewers each screened article abstracts for human or animal research examining low-level 
blast exposure and its relationship to neurologic health, including hearing and vision. To 
achieve reliability, reviewer teams compared results, and then discussed any discordant codes 
between themselves and with the review team and principal investigator. 

Title and abstract screening yielded 255 citations. Reference lists were screened and the 
SoS planning committee consulted. Targeted research team searches yielded an additional 
114 full text articles (studies, clinical and safety guidelines, policy documents, other relevant 
grey literature, past DoD Blast Injury Research SoS Meeting literature reviews and reports). 
The resulting 369 full-text articles were carefully read, and prespecified inclusion and exclu-
sion criteria were applied (see Table 3.1 and Figure 3.1). Full-text review and abstraction was 
completed to categorize articles by their type, target population, research design, and length 
of follow-up (if longitudinal information was provided). We excluded (1) human or animal 
studies that did not provide information regarding a blast exposure injury or a blast exposure 
assessment; (2) human studies that evaluated only severe blast exposure injuries (e.g., moderate 
or severe traumatic brain injury (TBI); mTBI but with no comparisons that excluded individu-
als with LoC); (3) animal studies with no experimental group receiving less than 20 psi blast 
exposure (see following section, Defining Low Level Blast Exposure); or (4) studies focused 
on pathologies outside of the scope of the review (e.g., psychiatric conditions in the absence of 
blast exposure injury assessments). After full text review, 74 articles met these final inclusion 
and exclusion criteria. Of these 74 studies, 28 were animal studies and 25 were human stud-
ies. The remainder were reviews (n = 7), bioengineering simulations (n = 10) or medical news 
reports (n =4). 

Table 3.1 
Literature Review Search Criteria

Inclusion Criteria Exclusion Criteria

English language articles only Articles not directly addressing research questions

Articles published between 2007 and 2017 (inclusive)a DTIC documents not approved for public release

Clinical and animal model studies

DTIC documents assigned Distribution A: Approved for public 
release: distribution unlimited

a Older publications were included when they were potentially critical to addressing the research questions or 
understanding the topic.
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Of the 53 human and animal studies, 23 were longitudinal. Of the longitudinal studies, 
16 studied animals (Baalman et al., 2013; Elder, Dorr, et al., 2012; Ewert et al., 2012; Gama 
Sosa, De Gasperi, Paulino, et al., 2013; Heldt et al., 2014; Kamnaksh et al., 2014; Luo et al., 
2014; Park et al., 2011; Perez-Garcia, Gama Sosa, et al., 2016; Pun et al., 2011; Rodriguez 
et al., 2016; Rubovitch et al., 2011; Säljö, Bolouri, et al., 2010; Säljö, Mayorga, et al., 2011; 
Tweedie et al., 2013; Woods et al., 2013) and seven studied humans (Carr, Stone, et al., 2016; 
Haran et al., 2013; Parish et al., 2009; Shupak et al., 1993; Tate et al., 2013; Thiel, Dretsch, 
and Ahroon, 2015; Walker et al., 2017). Only six studies (Elder, Dorr, et al., 2012; Gama Sosa, 
De Gasperi, et al., 2014; Haran et al., 2013; Luo et al., 2014; Thiel, Dretsch, and Ahroon, 
2015; Walker et al., 2017) followed subjects for longer than three months (three animal stud-
ies, three human studies) and only three followed subjects for longer than nine months, all 
of which were human studies (Haran et al., 2013, Thiel, Dretsch, and Ahroon, 2015; Walker 
et al., 2017). Among the longitudinal studies, both animal studies and human studies were 
noted to vary widely by sample, exposure methods, and assessments, as well as by outcome 
domains and assessments. As a result, it was difficult to clearly identify any replicated findings. 

Defining Low-Level Blast Exposure 

A full discussion of the biophysics of blast exposure is beyond the scope of this review. The 
interested reader can find a frequently cited and informative introduction in the Institute of 
Medicine report, Gulf War and Health, Vol. 7: Long-Term Consequences of Traumatic Brain 
Injury (Committee on Gulf War and Health, 2008). The direct physical effects of blast expo-
sure are complex and depend on the intensity and duration of the blast, distance of an exposed 
object from the originating blast, and the presence of reflective barriers (e.g., nearby hard sur-

Figure 3.1 
Literature Search Flow Diagram

Databases searched
PubMed, Web of Science,

PsycINFO, DTIC

114 full text articles added
• Reference list reviews
• Recommendations by 

planning committee
• Target RAND team searches

295 full text articles rejected
• Did not address review 

questions (no information 
was presented on low-level 
or subconcussive blast 
exposures)

3,637 citations rejected
• Unresponsive to the review 

questions
• Not approved for public 

releaseReference lists reviewed
255 full text articles

Review and abstraction
369 full text articles

Citations screened
3,892 unique titles/abstracts

74 full text articles
included in the review
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faces or enclosures) that may serve to amplify the exposure effects of a single blast event. There 
are important interspecies differences in the brain effects of blast exposure (Elder, Stone, and 
Ahlers, 2014; Säljö, Bolouri, et al., 2010). In humans, a blast exposure of 100 psi is widely 
considered lethal, and between 60 and 80 psi is potentially fatal. Anterograde memory defi-
cits without neurological impairment or gross neuropathological or neurohistological changes 
are produced in rodents after a 5.3 to 10.8 psi shock-tube blast exposure (Säljö, Bolouri, et al., 
2010). This finding is consistent with other studies suggesting that, in rats, blast exposures 
of up to 10.8 psi are consistent with low-level blast exposure (Ahlers et al., 2012). In con-
trast, blast exposures of 17 psi produced subdural hemorrhages and cortical contusions in rats 
(Ahlers et al., 2012), a level of neuropathology more severe that is found in neuroimaging stud-
ies of humans with mTBI. A summary of this information is shown in Table 3.2. 

Therefore, in an effort to be maximally inclusive of available research evidence relevant 
to low-level MOB exposure, we included animal studies that assessed the effects of blast expo-
sures up to 20 psi. It is important to note, however, that there is substantial variation across 
studies with regard to exposure paradigms, exposure thresholds, other blast characteristics 
(e.g., multiple versus single), animal species, pressure sensors, position of the animal at the 
time of exposure, and other laboratory-related factors that can affect blast-related exposure 
outcomes. However, given the inability to use experimental research designs in humans and 
the small number of human studies addressing low-level MOB exposures, the research team 
opted to include appropriate experimental animal evidence to inform questions of biological 
plausibility.

Magnitude of the Problem

The research team found no generalizable military-wide or service-specific population data (or 
ongoing studies) from which to estimate the occurrence of repeated, low-level MOB exposure 
or its potential health consequences.

Table 3.2 
Sample Levels of psi Experienced in Training and Theater 

Level of Blast Impact on Animals or Humans

3.3 psi Sustained intracranial pressure increases in pigs exposed to firing of military weapons

4.4 psi Sustained intracranial pressure increases detected in rats 

5.1 psi Positional transmission to rat brain 

5.3–10.8 psi Resulted in anterograde memory deficits without neuropathological or histological changes 
in rats

17 psi Produced subdural hemorrhages and cortical contusions in rats

60 – 80 psi Potentially fatal blast exposure in humans

100 psi Lethal blast exposure in humans

SOURCES: Ahlers et al., 2012; Budde et al., 2013; Chavko et al., 2011; Säljö, Arrhén, et al., 2008; Säljö, Bolouri, et 
al., 2010; Säljö, Mayorga, et al., 2011.
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Incidence and Prevalence of Blast Exposure 

According to the Defense Veterans Brain Injury Center, blast exposure injuries have been 
responsible for over 65 percent of the casualties in the ongoing conflicts in Iraq and Afghani-
stan (Wojcik et al., 2010). However, injury predication models (e.g., the Bowen survivability 
curve) used by DoD are limited to blasts more powerful than those incurred during training. 
Consequently, there has been little research and few (if any) guidelines or models from which 
to determine what may constitute a safe number or level for the low levels of blast exposure 
often incurred in training or analogous settings (Teland, 2012). We identified no research 
on the overall frequency with which low-level MOB exposure occurs. However, there have 
been several studies of potentially high-risk populations, such as explosive breachers, shoulder 
mounted artillery operators, and military service members deployed and in training.

Studies of Breachers

Military breachers are personnel who use explosives in the operational or training environment 
to gain rapid entry into buildings or across hard walls or structures. Breachers are regularly 
exposed to subconcussive levels of blast. There have been anecdotal reports of breachers who 
have experienced cognitive problems and other symptoms after extensive exposure to low-level 
MOB. We identified five studies that investigated this issue, none of which combined appro-
priate controls, attempted accounting for potential confounding, and a significant positive 
relationship of low-level MOB exposure to an outcome. A conference abstract described a pre-
post study of 31 Marine breachers without a control group for comparison. After two weeks 
of follow-up, most cognitive indicators showed improvements from the pre-exposure baseline, 
which the authors attributed to probable learning effects (Parish et al., 2009). There were 
no significant declines in cognitive function. Thiel and colleagues (2015) studied 12 Marine 
breacher trainers and compared them with a control group of 28 unexposed breacher engi-
neers. Ten of the breachers were followed for two years—the researchers found no association 
between cumulative subconcussive blast exposure from routine breacher training results and 
persistent neurological manifestations (Thiel, Dretsch, and Ahroon, 2015). 

In another study, a surveys of symptoms was administered to 135 breachers and 49 non-
breachers, finding significantly higher numbers and severity of self-report symptoms among 
the breachers. However, results were not adjusted for important and potentially confound-
ing variables, such as TBI history (Carr, Polejaeva, et al. 2015; Carr, Stone, et al., 2016). Yet 
another study compared five breacher instructors with 26 breacher students after breacher 
training and seven Marine controls on a broad battery of standard neurocognitive tests: the 
Automated Neuropsychological Assessment Metrics (ANAM) TBI battery, self-report mea-
sures (e.g., blast exposure, anxiety, depression, PTSD), and functional magnetic resonance 
imaging. The results did not yield clear evidence of neurological impairment in breachers or 
instructors (Carr, Stone, et al., 2016). Another study of 21 New Zealand breacher trainees 
attempted to link a number of experimental serum biomarkers of possible TBI to neurocogni-
tive performance and self-reported symptoms before, during, and after a two-week breacher 
training course (Tate et al., 2013). Some biomarkers were indeed associated with symptoms, 
but there was no direct measurement of exposure provided from which we could link to either 
biomarkers or symptoms, and no control group of unexposed individuals for comparison (Tate 
et al., 2013). In sum, the breacher studies to date have involved small samples, resulting in 
limited power to detect potentially important differences and in limitations to generalizabil-
ity. Carefully designed large, longitudinal studies that assess potential confounders, achieve 
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high follow-up rates, and use validated outcome measures are needed to better understand and 
describe the neurocognitive, functional, and symptom outcomes associated with this poten-
tially high-risk occupation. 

Studies of Shoulder-Mounted Artillery Operators

Shoulder-mounted weapons have become an increasingly powerful and important combat 
weapon. The blast generated from the Carl Gustav and shoulder-launched multipurpose 
assault weapon (SMAW) has not been quantified (Wiri et al., 2017). A single round from the 
Carl Gustav can weigh nearly ten pounds and is powerful enough to destroy a tank (Hamilton, 
2017). 

We found one study in this category. Investigators at the Swedish Sahlgrenska Academy 
found microhemorrhages in the brains and meninges of rats and pigs after exposure to experi-
mental Carl Gustav– and howitzer launcher–generated blast overpressure. Subsequently, the 
Swedish Armed Forces are said to have restricted the number of rounds that service members 
can be exposed to daily (Säljö, Arrhén, et al., 2008; “Blast Overpressure Is Generated from the 
Firing of Weapons, and May Cause Brain Injury,” 2009). However, we found neither experi-
mental animal studies replicating these findings nor descriptive or analytic epidemiologic stud-
ies to suggest human effects of these or similar weapons systems, and the current status of the 
Swedish Armed Forces policy is uncertain. 

Combat Settings

Combat-related health issues have been described expansively in the literature. However, our 
research team found no data regarding repeated combat exposures to low-level MOB. Stud-
ies have shown that combat exposure to concussive blast is associated with sensory symptoms, 
including complaints of hearing loss and tinnitus (Reid et al., 2014) and poorer cognitive per-
formance (Haran et al., 2013). However, we did not identify any epidemiologic studies that 
specifically evaluated the health effects of low-level MOB exposures during combat. 

Other Occupations or Informative Analogues

The research team expanded its search from military and biomedical resources to include 
occupational safety, labor, physics, and engineering literature. We sought to learn from the 
mining and construction industries, which interact with small blast ordnances on a routine 
basis. While there are likely many parallels, the literature reviewed in this section emphasized 
pulmonary, dermatologic, and other morbidities associated with inhalation of toxic particu-
lates, instead of the cumulative neurological effects of blast exposure. 

Potential Neurological Consequences and Mechanisms

Motor Effects

None of the human or animal studies identified specifically looked for or identified motor 
effects of repeated low-level MOB exposure. 

Neurosensory Effects

None of the human studies specifically sought or revealed neurosensory effects of repeated 
low-level MOB exposure. One study of rat corneal tissue found that exposure to both single 
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and repeated low-level blast was associated with increased transient receptor potential vanil-
loid 1 (TRPV1) expression (Por, Choi, and Lund, 2016). TRPV1 has a role in mediating vari-
ous types of pain, and it is expressed on small, unmyelinated sensory neurons in the trigeminal 
ganglia.

Cognition Effects

Two human studies evaluated neurocognitive effects of repeated low-level MOB exposure, 
both negative studies of breachers (Parish et al., 2009; Tate et al., 2013). Two other studies 
looked at cognitive effects in samples that contained service members with mixed concussive 
and subconcussive blast exposure. Haran and colleagues (2013) analyzed longitudinal ANAM 
test data from 169 recently deployed, highly combat-exposed marines. Many reported con-
cussions, and concussion was associated with measurable decreases in cognitive performance 
2–8 weeks after deployment. Following up with the subjects after eight months, postconcus-
sive symptoms persisted, but measurable cognitive deficits had resolved (Haran et al., 2013). 
A review of the cognitive construct assessments from nine studies (12 groups) involving 1,154 
participants with more severe repeated combat blast–related mTBI—50 percent reported asso-
ciated LoC (Karr, Areshenkoff, and Garcia-Barrera, 2014)— found that executive function, 
verbal delayed memory, and processing speed were the most-sensitive cognitive domains to 
blast-related TBI, and that observed associations were not explained by PTSD symptom sever-
ity. All of the studies in this review were cross-sectional and received low quality ratings. The 
average participant was assessed an average of 3.8 years after the event (a factor plaguing the 
vast majority of military and veteran studies of mTBI from any cause to date). The findings, 
however, suggest that cognitive effects of low-level, repeated MOB exposure are plausible and 
may not be explainable by concurrent PTSD. 

We identified six animal studies that investigated low-level blast exposure, all of which 
revealed positive findings. Studies exposing rats to repeated low-level blast have found antero-
grade memory deficits on a passive avoidance task at 10.8 psi, and transient learning deficits in 
a water-maze task after 5.3 psi blast exposures (Ahlers et al., 2012); memory deficits in a water 
maze persisting through to a 30-day follow-up after exposure to a single 14.5 psi blast (Budde 
et al., 2013); and impaired memory on a novel-object recognition task after a single exposure 
to 10.7 psi (Baalman et al., 2013). A study of mice found impaired object recognition after 
multiple 2-psi blast exposures paired with 100 decibel noise (Xie, Kuang, and Tsien, 2013); 
impaired memory on novel-object recognition and Y-maze for 30 days after a single 5.5-psi 
blast exposure (Rubovitch et al., 2011); and impaired memory on novel-object recognition but 
not Y-maze or passive avoidance at 30 days after a single 2.5-psi blast exposure (Tweedie et al., 
2013). Though it is unclear how such findings may translate to humans, these studies suggest 
that it is plausible that there would be cognitive effects after repeated, low-level MOB expo-
sure. Studies in large animals, with a longer period of follow-up, are needed. 

Neuropathology Effects

None of the 25 human studies we reviewed looked for neuropathologic changes after low-level 
MOB exposure. However, eleven animal studies investigated neuropathological changes after 
exposure to low-level blast exposure, and all but one (Elder, Stone, and Ahlers, 2014) found 
changes. An anatomy-based region-of-interest analysis using diffusion tensor imaging (DTI) 
to study rat brains (Kamnaksh et al., 2014) found significant interactions in axial and radial 
diffusivity in a number of subcortical structures after single and multiple 19.9-psi blast expo-
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sures. Multiple (versus single) exposed rats were associated with thalamic (but not hippocam-
pal) changes. In rats two weeks after a single 10.7-psi blast exposure, Baalman and colleagues 
(2013) found little or no changes in cerebral cortex, corpus callosum, and hippocampus injury 
markers, though in the blast-exposed animals there was significant shortening of axon ini-
tial segments in the hippocampus and cortex. Another study found evidence of white-matter 
damage and minimal cell death, localized mainly in the corpus callosum and periventricular 
regions in rats after a 1.7-psi blast exposure (Park et al., 2011). There was also evidence of shear 
lesions in rats, and chronic changes in the microvasculature were evident several months after 
exposure to both single and multiple 10.8-psi blasts (Gama Sosa, De Gasperi, et al., 2014). 
Another study found an increase of intracranial pressure several hours after low-level (4.4- or 
8.7-psi) exposure to a single blast (Säljö, Bolouri, et al., 2010). Scattered pyknotic neurons have 
also been found in the rat cortex after exposure to two blasts of 2.9 psi (Moochhala et al., 
2004; Pun et al. 2011). Altered gene expression in over 5,700 genes, as well as greater amyloid 
precursor protein immunoreactive cells in white matter, was also observed following a single 
low-level blast exposure (Pun et al., 2011). Finally, decreases in fractional anisotropy (FA) have 
also been observed in brains that were exposed to a single low-level blast exposure (Budde et 
al., 2013). 

Among mouse models, one study found increased ganglioside and depleted ceramide 
in the hippocampus, thalamus, and hypothalamus associated with low-level blast exposure 
(Woods et al., 2013). Researchers also observed an increase in blood-brain barrier (BBB) per-
meability one-month post-single low-level blast exposure on MRI (Rubovitch et al., 2011). 
While DTI showed an increase in FA and a decrease in radial diffusivity, these changes may 
represent brain axonal and myelin abnormalities. Other studies using mouse models reported 
acute subcortical changes after mild blast-induced TBI, with both single and multiple blast 
exposures (Kamnaksh et al., 2014). Finally, a robust astrogliosis and increased p-Tau immuno-
reactivity was observed upon post-mortem pathological examinations of mice after low-level 
blast exposure (Luo et al., 2014). Interestingly, one mouse model explored the differences in 
blunt-force trauma mTBI and blast-related mTBI and found them to be distinct, in that path-
ways that lead to Alzheimer’s disease are up-regulated in blunt-force-trauma injury and down-
regulated in blast injury (Tweedie et al., 2013). Finally, researchers found single low-level blast 
exposure caused dynamic microglial and macrophage responses and microdomains of brain 
microvessel dysfunction among mice (Huber et al., 2016). They also argue that mild blast 
exposure causes an evolving CNS insult that is initiated by discrete disturbances of vascular 
function. Both of these conditions set the stage for more-protracted and more-widespread neu-
roinflammatory responses. 

Given substantial interspecies neuroanatomical and cranial differences between rodents 
and humans, the extent to which such findings in rodents may be generalized to humans is 
unclear. However, the findings provide evidence that neuropathology in humans, related to 
repeated low-level MOB exposure, is plausible. Future animal studies should assess for the 
neuropathological effects of low-level blast exposure in large animals, including nonhuman 
primates. 

Behavioral and Emotional Effects 

Four human studies that we reviewed assessed behavioral and emotional issues related to mixed 
samples of concussive and other blast exposures. Studies of blast-related mTBI suggest that 
blast exposure may be associated with a myriad of symptoms, both behavioral and emotional 
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(e.g., PTSD, depression, anxiety) and physical (including those symptoms we think of most 
classically as “neurological” symptoms, such as headache, dizziness, memory problems, con-
fusion, and nausea) (Hoge et al., 2008; Wilk et al., 2012). These studies suggest that mental 
and physical symptoms are elevated in blast-related mTBI, though to a lesser degree, even in 
the absence of a precipitating head injury with LoC (Hoge et al., 2008; Wilk et al., 2012). A 
possibility that both of these studies raise is that postconcussive symptoms are epiphenomena 
of PTSD and depression. Macera et al. (2012), however, investigated the co-occurrence of 
mTBI and PTSD and found that blast-related TBIs worsen the self-report of symptoms that 
overlap with PTSD, such as irritability (Macera et al., 2012). Likewise, Toyinbo et al. (2017) 
conducted an an online survey and found that blast exposure, not mTBI per se, was associated 
with greater PTSD arousal symptoms and tinnitus (Toyinbo et al., 2017) and mTBI diagnosis 
alone was not significantly associated with an increase in other PTSD symptoms (Toyinbo 
et al., 2017). Unfortunately, however, we identified no human studies that isolated the effects 
of low-level MOB exposure on behavioral and emotional problems. 

While it is tempting to view blast-related TBI and PTSD as distinct disorders, Elder, 
Stone, and Ahlers (2014) have offered a provocative model in which blast exposure may unmask 
a vulnerability to PTSD-related symptoms. In this model, blast-related TBI may reduce frontal 
cortical inhibition of the amygdala, a center of fear expression thought to heighten responses 
to psychological threats, which is implicated in PTSD development. For example, the same 
research team found that a blast-exposed rat, many months after the blast exposure, develops 
new traits that weren’t there before the exposure when exposed to a predator scent (a psy-
chological stressor). They argue that an initial blast exposure may predispose individuals to 
develop PTSD in response to a subsequent psychological stressor. This can be seen as further 
support for blast exposure affecting the biological substrates that underlie PTSD (Perez-Gar-
cia, Gama Sosa, et al., 2016). In a separate study, the authors showed that these PTSD-related 
symptoms were often present many months after blast exposure, and that these symptoms 
could be reversed with the medication BCI-838, which is currently under review for use in 
humans for depression and suicidality, and has been shown to have antidepressant effects in 
animals (Perez-Garcia, De Gasperi, et al., 2018). 

Studies of animals exposed to a low-level blast also offer valuable insight into the potential 
association of behavioral symptoms and low-level MOB exposure. We identified five animal 
studies that investigated this issue, all of which had positive results. Rat and mouse exposure to 
a single low-level blast was associated with a decreased preference for novel objects (Rubovitch 
et al., 2011; Baalman et al., 2013; Tweedie et al., 2013), and multiple and single exposures were 
associated with increased anxiety, enhanced learned-fear response, and intensified acoustic 
startle, though in most of these studies the animals are never aware of a blast-induced trau-
matic stressor because they are anesthetized (Elder, Dorr, et al., 2012; Heldt et al., 2014). This 
may lend support for Elder and colleagues’ frontal lobe-amygdala fear-disinhibition hypothesis. 

Auditory and Vestibular Effects

It has long been known that military populations are exposed to a multitude of compounding 
risks for auditory impairment, potentially leading to inner-ear and cochlear injuries (e.g., blast 
wave and noise exposure), middle-ear injuries (e.g., tympanic membrane perforation, ossicu-
lar disruption), outer-ear injuries (e.g., burns, flying debris), and chronic tinnitus (“ringing of 
the ears”) (Fausti et al., 2009). We identified three studies of blast exposure on the auditory 
and vestibular system in humans, and perhaps not surprisingly, all of them yielded positive 
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findings. One study of 573 previously deployed service members with mTBI found a dose-
response relationship between higher levels of service member–reported combat-blast exposure 
and service member–reported hearing loss and tinnitus (Reid et al., 2014). Using a crossover 
design, researchers found that exposure to repeated low-level blasts from small-caliber firearms 
affected middle-ear function and was associated with subsequent report of transient tinnitus, 
even when wearing fitted earplugs, though adherence to earplug use was not reported. They 
concluded that exposure to small-caliber firearms may play a role in the early stages of auditory 
fatigue and eventual hearing loss (Job et al., 2016). The vestibular system helps to maintain 
balance and postural stability and has the potential to be impacted by repeated exposure to 
low-level blasts, though these effects are not well understood. The third study described five 
Israeli soldiers exposed to blast but who did not experience head trauma, LoC, or amnesia. 
Three reported vertigo, four had hearing loss, four suffered from tinnitus, and one had otalgia 
(Shupak et al., 1993). 

Visual Effects

There were no human studies found of eye effects of low-level MOB exposure. Closed-globe 
eye injuries are known to occur from combat-related blast exposure, though these injuries 
typically occur at higher blast-exposure levels than are the focus of this review. We found one 
animal study on the eye effects of low-level blast exposure and it yielded positive findings. 
Por and colleagues (2016) found that both single and repeated 9.9-psi blast exposures led to 
increased pain and inflammation markers in the corneal tissue of rats. 

Potential Early Indicators of Low-Level MOB Exposure

There are significant disadvantages associated with measuring low-level MOB exposure. There 
are few currently available methods, and Table 3.3 describes their advantages and disadvan-
tages. Most of these assessment methods involve a significant burden for service members or 
the military unit. None of the methods are supported by published assessments of validity, reli-
ability, adherence, or feasibility for assessing low-level MOB exposure.

One promising way to detect low-level MOB exposure may be through biomarkers and 
sensors. An accurate, reliable, and lightweight biosensor could offer objective, real-time assess-
ment of exposure with minimal distraction to service members and military units. We identi-
fied three biosensor studies, none of which suggested that biosensors were effective for their 
intended purpose. One of these was an unpublished study suggesting the biosensors were 
insufficiently sensitive or specific for surveillance of combat blast–related TBI (Department of 
Defense Blast Injury Research Program Coordinating Office, 2014). These preliminary data 
suggest that there may be insufficient standardization of available biosensors for assessing low-
level MOB exposure. 

The Defense Advanced Research Projects Agency (DARPA) funded the development of 
the Blast Gauge System, which is a three-piece sensor system designed to record overpressure 
exposure levels in the battlefield. While the sensor technology may be adequate, a major chal-
lenge in this field is the absence of a feasible way to link sensor data to blast exposure injury. 
Panzer et al. (2012) demonstrated that in individuals with severe non-MOB blast-induced TBI, 
injury tolerance decreased with each exposure. Individual differences in overpressure-exposure 
thresholds to injury may present difficulties in the development of a general guideline for over-
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pressure exposure limit and frequency (Panzer et al. 2012). Second, Courtney and Courtney 
(2011) identified that such thresholds are subject to blast exposure conditions and that a blast 
exposure can induce brain injury through multiple simultaneous mechanisms. This indicates 
that how an exposure event occurred (blast-specific) affects injury, and that relationship may 
need to be quantified. Finally, McEntire et al. (2010) showed that helmet-mounted sensors 
do not measure the overpressure that the head experiences during a blast. Their experimental 
data revealed that the head may experience vastly different forces, despite similar helmet sensor 
readings (McEntire et al. 2010). 

Work has also been done in the area of biomarkers. We identified four studies within 
this category, two of which had positive results. As mentioned above, Por et al. (2016) exposed 
rats to single, multiple, or zero (control) compressed-air blasts to determine the expression of 
the TRPV1 channel, calcitonin gene-related peptide (CGRP), substance P (SP), endothelin-1 
(ET-1), neutrophil infiltration, and myeloperoxidase (Por et al., 2016). These were identified as 
associated with blast exposure and pain and inflammatory mediators following ocular trauma. 
Results showed an increased expression of TRPV1, CGRP, SP, ET-1, and neutrophil infiltra-
tion; therefore, these findings suggest activation of pain- and inflammation-signaling follow-
ing blast exposure (Por et al., 2016). Another study by Tate and colleagues (2013) looked at 
biomarkers in New Zealand Defense Force members who are breachers. This study found 
higher concentrations of three biomarkers—ubiquitin C-terminal hydrolase-L1, aII-spectrin 
breakdown product, and glial fibrillary acidic protein—which were associated with signifi-
cantly longer reaction times, fewer correct answers on neurocognitive performance tests, and 
increased symptom reporting (Tate et al., 2013). Unfortunately, the study did not directly 
measure low-level blast exposure or employ a control group differing in low-level blast expo-
sure. Therefore, the study did not validate these biomarkers as indicators of low-level MOB 
exposure. 

Table 3.3. 
Methods of Assessing Exposure to Low-Level MOB 

Assessment Method Advantages Disadvantages 

Service member or buddy self-report • Simple
• Low-cost

• Significant unit workload
• Significant service member 

workload
• Easily gamed
• Requires ongoing quality 

control

Supervisor report • Accountable • Significant leader workload
• Low priority under fire
• Low feasibility

Independent research rater • Low unit workload
• Quality control-data 

gathering

• Challenge embedding in unit

Biomarkers • Objective indicator 
• Harder to game 

• No agreement on best 
biomarker(s)

• May require biological samples
• Potentially costly sample stor-

age and processing

Biosensor • Objective indicator 
• Low burden 
• Acceptable to assessor 

• Device reliability and validity 
concerns
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Blennow and colleagues (2011) completed three studies to assess the relationship of 
repeated low-level MOB exposures to various biomarkers. First, 21 Swedish military officers 
were asked to repeatedly fire a howitzer or bazooka; then the researchers obtained samples of 
their cerebrospinal fluid (CSF) and serum biomarkers. Second, another group of 32 officers 
fired high-explosive antitank grenades using Carl Gustaf–model bazookas; serum biomarkers 
were drawn the day before; 30 minutes after; and one, 12, and 24 hours after exposure. Third, 
seven officers were exposed to 100 charges of detonating explosives over ten days. Serum sam-
ples were drawn the day before exposure; days 8, 9 and 10 of the exposures; and then ten days 
after all exposures. Nineteen healthy, age-matched volunteers acted as comparison controls 
for all three exposed groups. CSF biomarkers for neuronal or axonal damage (tau and neu-
rofilament protein), glial cell injury (glial fibrillary acidic protein and S-100 calcium-binding 
protein B), BBB damage (CSF and serum albumin ratio) and hemorrhages (hemoglobin and 
bilirubin) were unrelated to the blast exposures (Goverover and Chiaravalloti, 2014). 

The magnitude of the biomarker challenge is perhaps best captured by Elder and col-
leagues, who point out, “there are no biomarkers that can distinguish cognitive, affective, and 
somatic symptoms induced by a psychological stressor from those induced by physical trauma” 
(Elder et al., 2014). All of these factors similarly complicate our ability to understand and ana-
lyze blast exposure sensor data. The development and use of improved sensors and biomarkers, 
along with in situ coordination of care, will be instrumental to addressing this knowledge gap.

Prevention Strategies

“Prevention is the best medicine” remains a pervasive truism and a widely held and largely 
unchallenged societal view. However, prevention programs targeting health risks that do not 
exist or implementing preventive methods that are not effective is clearly an unnecessary waste 
of societal resources, resources that presumably can be put to more productive use. There-
fore, the relevance of the following discussion (and future discussions) of prevention strategies 
depends on the answers to several key questions that at present remain largely unanswered: 

• Is low-level MOB exposure a significant risk to current and future force health? There should 
be general consensus, ideally based on empirical data, that the threat to health posed by 
MOB is both real and significant before we devote significant resources to preventing the 
health effects of an exposure. 

• Are current preventive interventions safe and effective? Even if the problem is substantial, 
ineffective primary prevention approaches will prove wasteful. 

• Will preventive intervention benefits outweigh the harms? If a preventive intervention is 
effective but causes more harm than good, then implementation is likely self-defeating.

• Is the preventive intervention timely and feasible? If the preventive intervention is perfectly 
effective but cannot be delivered in time or in the appropriate context, then it is not 
useful. There are any number of related factors to consider here, such as the availability 
of relevant material and staffing and acceptance of the intervention by leaders, service 
members, and the larger society. 

While prevention of illness and injury associated with repeated exposure to low-level 
blasts is relatively underresearched, we can draw from the literature on prevention methods 
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for blast exposure injuries more generally to better understand prevention methods. The main 
types of prevention methods are barrier methods—for example, helmets, earplugs, and protec-
tive goggles. 

Protection Methods

Research indicates that helmets that service members wear, such as the Advanced Combat 
Helmet (ACH), are traditionally designed to protect wearers from head trauma caused by 
projectiles. Unfortunately, they are not designed to protect wearers from blast overpressure 
exposure and resulting neurotrauma. Moreover, traditional helmets may even exacerbate blast-
related injury (Grujicic, Bell, Pandurangan, and Glomski, 2011; Ganpule et al., 2012; Kulkarni 
et al., 2013; Moss, King, and Blackman, 2009). While some studies found that ACH provided 
some level of protection from blast-related injury (Grujicic, Bell, Pandurangan, and Glom-
ski, 2011), others found that space between pads inside the helmet creates blast-pressure-wave 
access to the skull and brain. When wearers are exposed to blast overpressure waves, these 
spaces allows the blast waves under the helmet where they reverberate, occasionally amplify-
ing them in excess of the external blast-pressure waves. This causes the skull to flex, producing 
potentially dangerous forces acting on brain tissue (Moss, King, and Blackman, 2009). 

One promising solution is to produce helmets without gaps between pads. In models, this 
has been shown to greatly reduce the reverberation of the blast within the helmet (Moss, King, 
and Blackman, 2009; Ganpule et al., 2012). Other potential solutions include the use of poly-
urea foam, face shields, and earplugs. Polyurea foam, compared with standard foam paddings, 
reduces the peak load of the blast wave (Grujicic, Bell, Pandurangan, and He, 2010). A partial 
face shield may reduce stress intensity on the brain (Nyein et al., 2010). Earplugs are the most 
effective barrier against blast-related hearing loss (Helling, 2004; Schulz, 2004; Wilmington 
et al., 2009; Dougherty et al., 2013). The angle of the head in relation to a blast exposure plays 
a role in how explosive force may cause the skull to flex (Chavko et al., 2011) and should be 
considered in the design of weapon systems that could result in repeated low-level blast expo-
sure and how these weapons are used during training. 

Body armor also has the potential to protect against chronic damage as a result of expo-
sure to blasts. Rodriguez et al. (2016) found that mice protected with a polycarbonate body 
shield during blast exposure experienced a lower degree of signal enhancement compared with 
mice lacking a body shield, suggesting that improved body armor could reduce risks associated 
with blast exposure. 

Nonbarrier Methods

Nonbarrier prevention methods, such as education programs, may aid efforts to reduce low-
level MOB exposure. Available studies primarily address hearing loss. Among carpenters, 
research has suggested that education programs can increase the usage of hearing protection 
methods (Stephenson and Stephenson, 2011). However, one study found that even though 
British soldiers knew the specifics of hearing protection policy and that their job could affect 
their hearing, several factors prevented proper protection usage: communication difficulties, 
discomfort, and impracticability of use in some situations. The investigators concluded that 
hearing conservation education programs should be uniquely tailored for military populations 
(Okpala, 2007). An experimental rat study found that the antioxidant 2,4-disulfonyl alpha-
phenyl tertiary butyl nitrone (HPN-07) combined with N-acetylcysteine (NAC) administered 
an hour after three consecutive 14-psi blast exposures enhanced recovery and prevented per-
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manent hearing loss (Ewert et al., 2012). While a promising lead, the work is preliminary 
(Oishi and Schacht, 2011). 

Ongoing Research

The military is currently funding ongoing research regarding protection from occupational 
blast exposure. One study is led by Rong Gan at the University of Oklahoma. The objective 
of this study is “to determine middle ear protective mechanisms and develop the finite ele-
ment (FE) model of the human ear for simulating blast exposure injury and assisting design/ 
evaluation of [hearing protective devices] HPDs” (Gan, 2015). The study is entering its final 
year (as of this writing in 2019) and is attempting to validate HPDs using the FE model that 
the researchers have developed. Another ongoing project, led by Brittany Coats at the Univer-
sity of Utah, is studying “Temporal Progression of Visual Injury from Blast Exposure” (Coats 
and Shedd, 2016). This study found that when rats are exposed to shock tube blast, the stroma 
of the eye thickens after two weeks, then the epithelial layer thickens at five weeks, leading 
to eventual corneal scarring. Early identification of corneal thickening may provide a time 
window during which appropriate early intervention could prevent corneal scarring and result-
ing visual impairment.  
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CHAPTER FOUR

Discussion

This section starts with a general summary of central findings, using the four key questions 
outlined in Chapter One as guideposts. Then, for each question, we discuss and attempt to 
prioritize key research gaps and opportunities for further understanding related to low-level 
MOB exposure. The questions are

1. What is known about the occurrence of repeated occupational blast exposure incurred 
during military service?

2. What is the scientific evidence relating to potential neurological health effects of 
repeated occupational blast exposure?

3. What are promising strategies for preventing the potential neurological effects of 
repeated MOB exposure?

4. What are promising early detection indicators for the potential neurological conse-
quences of repeated MOB exposure?

For the research questions, we did not identify any epidemiological studies of low-level 
MOB exposure to help us understand the potential magnitude of the issue. We explored such 
specific situations and assignments as breacher training, shoulder-mounted artillery opera-
tors, and military service members deployed and in training—however, none of this research 
offers a comprehensive understanding of the magnitude of low-level MOB and whether low-
level MOB exposure constitutes a neurological risk. 

Research Opportunities and Gaps

In this section, we discuss the research necessary to develop a strong understanding of the neu-
rological effects of low-level MOB exposure. A full understanding of the potential short- and 
long-term outcomes of low-level MOB is challenging because there has been little research on 
this topic to date, and the research that does exist does not present a clear picture of the issue. 
Most research on the issue of blast-related brain injury is generally concerned with a magnitude 
of blast exposure that is stronger than low-level MOB exposure. And, while epidemiologic and 
clinical studies to date provide sufficient evidence of an association between combat-related 
blast exposure without penetrating injury and postconcussive syndrome (PCS) and PTSD, this 
is not the type of blast exposure that is the focus of this report. Furthermore, the nature of the 
relationship between PCS and PTSD remains unclear, and it is possible that nonspecific symp-
toms of PTSD explain the association between low-level MOB exposure and PCS. As such, 
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we cannot recommend specific strategies for mitigating the neurological effects of low-level 
MOB, because these effects have not yet been established. If, however, it is assumed that neu-
rological effects of low-level MOB exposure are significant, successful intervention will require 
knowledge regarding effective prevention strategies. To target research in this area requires an 
understanding of the most-frequent intermediate- and long-term risks. It is clear that more 
research is needed to understand whether low-level MOB exposure is a risk to service members, 
the specific risks and outcomes involved, and how to determine the best candidates for emerg-
ing preventive measures. In the ensuing paragraphs, gaps in the literature are discussed and we 
make related recommendations. 

Among animals, studies in mouse and rat models suggest it is plausible that low-level 
MOB exposure could result in neurological effects. It is uncertain how blast exposure levels 
tested in animal studies relate to exposure levels in humans. Furthermore, many of these stud-
ies only involve a single blast exposure; therefore, it is unknown if the results of these studies 
would vary should there be multiple exposures. If further animal testing is to be done to assess 
the neurological effects of low-level MOB exposure, it should be done in larger animals, ide-
ally nonhuman primates. Additionally, the cumulative effect of low-level blast exposures also 
needs further exploration within any future animal testing. Furthermore, testing is needed on 
larger animal species to determine the level, or range of levels, of psi that constitute safe and 
acceptable MOB exposure levels, and which levels lead to adverse outcomes (e.g., persistent 
neurocognitive or neuropathological changes; mild, moderate, and severe TBI). This is not yet 
defined in the literature, a fact that complicated our efforts to appropriately scope this review. 

Among humans, completing carefully designed prospective, longitudinal research is 
essential. These studies should include a representative sample of service members anticipated 
to have varying levels of exposure to low-level MOB (records should include the intensity of 
the blast and number of exposures), appropriate accounting of potential confounding variables 
(e.g., past TBI and PTSD), validated measures of low-level blast exposure and key outcomes of 
interest, and concerted efforts to maximize follow-up during and after military service. Fur-
ther work is needed to validate measures of exposure. Wearable sensors have the potential to 
give a more complete, reliable, and valid measure of MOB exposure, and collecting the data 
from those monitors would be a minimal burden to the service members wearing them. 

However, sensor technology will need further work to ensure that the sensors could offer 
the previously mentioned measurement features and would be durable enough for military use. 
To accomplish this, we first recommend a long-term data-collection effort to measure expo-
sure levels from MOB events in training. This effort should last for a period of three to five 
years. This collection can be performed with existing blast-exposure sensors, such as the Blast 
Gauge system. Training data (e.g., the type of heavy weapons training that a service member 
undergoes, recording the number of heavy-weapon launches during the exposure period) and 
any mental health or neurological issues should also be recorded. Second, we recommend a 
modeling effort to improve or develop precise mathematical models that link sensor data to 
overpressure forces on the brain. 

Once this research is complete, sensors can be used to measure exposure in a longitudinal 
study. At the conclusion of that study, further research can be performed to analyze the col-
lected data, apply and improve mathematical modeling to convert sensor data into measure-
ments of overpressure forces on human brain and other tissues, and link the effects of multiple, 
low-level MOB exposure events to neurological health. Sensors could be used as an early detec-
tion device to signal potentially harmful levels of MOB exposure. 
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Finally, there is evidence that improvements to helmets, enforcing adherence to hearing 
protection, and supplemental antioxidants may eventually serve to mitigate the neurological 
effects of blast exposure (Moss, King, and Blackman, 2009; Oishi and Schacht, 2011; Ste-
phenson and Stephenson, 2011; Ganpule et al., 2012). However, these have only been tested at 
higher-intensity blast exposure levels, and more research is required to determine (1) whether 
protection from low-level MOB exposure is necessary and (2) if these approaches are effective 
for mitigating the neurological effects of low-level MOB exposure. 

We are not suggesting the abandonment of current protective measures against high-
intensity combat blast injuries (e.g., mild, moderate, and severe TBI). However, as it pertains 
to low-level MOB exposure, the state of the science is preliminary. Implementing aggressive 
preventive programs against this threat—without adequate evidence of preventable injury—
risks unintended consequences and the consumption of considerable resources without com-
mensurate benefit.

Overall Recommendations

Perhaps the most striking finding from this review of the literature is how little research has 
been completed to determine the organizational threat and service member health impact of 
low-level MOB exposure, in contrast with our rapidly improving empirical research base relat-
ing to blast-related traumatic (concussive) brain injury. A Center for New American Security 
review of low-level MOB exposures (Fish and Scharre, 2018), published as we were completing 
this review, came to similar conclusions regarding the level of scientific uncertainty that exists 
relating to the neurological effects of low-level MOB exposure and recommended aggressive, 
ongoing surveillance of both exposure and neurological outcomes. However, military service–
wide efforts to implement population exposure surveillance are more likely to be ineffective 
if they are implemented before the neurological effects of low-level MOB exposure are better 
characterized. 

Prior to rolling out population-based military surveillance efforts, epidemiologic and 
other research is needed to establish whether low-level MOB exposure poses neurological or 
other health risks to service members and what, if any, the specific risks are. Surveillance pro-
grams require specific information to ensure collection of appropriate data, information that 
does not appear to be known in sufficient detail yet. Additional research, prior to surveillance, 
can ensure that surveillance efforts are calibrated to assess the most-important aspects of blast 
exposure and related outcomes. 

Currently, most data from human and animal studies address the effects of higher-level 
blast exposures that can lead to concussion and more severe TBI. These studies do not allow 
a parsing of low-level MOB exposure effects, and therefore cannot adequately inform under-
standing of the risk that low-level MOB exposure creates for service members. Therefore, our 
main recommendation is for research that advances understanding of the specific health effects 
of low-level MOB exposure. This should include epidemiological studies to determine the mag-
nitude of the problem and longitudinal research to better characterize short-,  intermediate-, 
and long-term health risks. Other studies can help to calibrate future surveillance efforts. For 
example, neuropsychological research should be completed to determine which assessments 
are best for early detection of the potential cognitive effects of repeated low-level MOB expo-
sure. Similarly, animal research can help researchers to better conduct human studies. These 
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studies should include nonhuman primate research, so that results will more easily translate to 
humans. Other recommendations include the development and testing of preventive interven-
tions and biomarker and biosensor validation studies suited for use with preventive materiel 
and strategies. 
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